基本信息
陈小林:男,博士,副教授,硕士生导师。
学习工作经历: 2000.9-2004.6:华中农业大学植物保护系,本科 2004.9-2011.6:中国农业大学植物病理学专业,硕博连读 2011.7-2014.10:中国农业大学作物遗传育种专业,博士后 2014.10-2015.3:北京市农林科学院,科研助理 2015.3-至今:华中农业大学,副教授
研究内容: 以稻瘟菌-水稻互作机制作为模式系统,从事分子植物病理学研究,力求为深入理解稻瘟菌的致病分子机理和水稻抗稻瘟病菌的分子机理提供新的视角,为其它非模式病原真菌和非模式寄主植物的研究提供借鉴,并为防治稻瘟病乃至其它真菌病害提供理论依据和应用基础,以期开发新的杀菌剂,培育抗病品种,发现新的病害防控途径。 当前主要研究方向:结合正向遗传学和反向遗传学策略,以解析致病过程调控机制为目的,结合功能基因组学,修饰蛋白组学,分子细胞生物学,生物信息学等手段,重点在pH信号途径,翻译后修饰,亚细胞结构等在致病过程中的生物学功能及调控机制方面进行深入研究:
1)稻瘟菌翻译后修饰和表观遗传调控机制; 2)稻瘟菌pH信号调控网络机制; 3)稻瘟菌分子细胞生物学调控机制; 4)稻瘟菌-水稻互作的信号识别分子机制;
1)主持国家自然科学基金青年项目“GPI锚定修饰在稻瘟菌致病过程中的作用和机理研究”31601585,2017.1-2019.12 2)主持国家自然科学基金面上项目“稻瘟菌酸性pH信号途径的鉴定及其在致病过程中的作用研究”31571952,2016.1-2019.12 3)参加国家自然科学基金面上项目“稻瘟菌一个含多KH结构域致病蛋白作用机理的研究”31371885, 2014.1-2017.12 4)主持杂交水稻国家重点实验室开放基金“稻瘟菌菌株特异性致病相关基因的克隆和功能分析”2016KF02,2016.8-2019.8 5)主持农业病虫害生物学国家重点实验室开放基金“稻瘟菌侵染的水稻N糖基化定量蛋白组学研究”SKLOF201617,2016.1-2017.12 6)主持华中农业大学校自主科技创新基金“翻译后修饰在稻瘟菌致病过程中的作用机理研究”2662015PY085,2016.1-2019.12 7)主持华中农业大学新进教师科研启动专项“稻瘟菌两种糖基化修饰系统的比较研究”0900206306,2015.1-2017.12 8)主持中国博士后科学基金项目“稻瘟菌pH信号调控网络的研究”2012M510619,2012.1-2013.12 9)主持中国农业大学博士后科研创新项目“稻瘟菌pH信号调控机制的研究”2011BH015,2011.9-2012.6
1)Chen X.L., Xie X., Caiyun Liu C.Y., Zeng L.R., Zhou X.P., Luo F., Wang G.L.* and Liu W.D.* 2018. Proteomic Analysis of Ubiquitinated Proteins in Rice (Oryza sativa) After Treatment With PAMP Elicitors. Frontiers in Plant Science, (2018)9:707. doi: 10.3389/fpls.2018.00707.
2)Yuan J.L., Wang Z., Xing J.J., Yang Q.Y. and Chen X.L.* 2018. Genome-wide Identification and characterization of circular RNAs in the rice blast fungus Magnaporthe oryzae. Scientific Reports, (2018)8:6757. doi: 10.1038/s41598-018-25242-w.
3)Wang Z., Zhang H., Liu C.Y., Xing J.J. and Chen X.L.* 2018. A deubiquitinating enzyme Ubp14 is required for development, stress response, nutrient utilization, and pathogenesis of Magnaporthe oryzae. Frontiers in Microbiology, (2018)9:769. doi: 10.3389/fmicb.2018.00769.
4)Liu C.Y.#, Li Z.G.#, Xing J.J., Yang J., Wang Z., Zhang H., Chen D., Peng Y.L. and Chen X.L.* 2018. Global analysis of sumoylation function reveals novel insights into development and appressorium-mediated infection of the rice blast fungus. New Phytologist. doi: 10.1111/nph.15141.
5)Chen X.L.* 2018. Infection process observation of Magnaporthe oryzae on barley leaves. Bio-protocol, Vol 8, Iss 08. doi: 10.21769/BioProtoc.2833.
6)Li L.W.#, Chen X.L.#, Zhang S.P. , Yang J. , Chen D. , Liu M.X., Zhang H.F. , Zheng X.B. , Wang P., Peng Y.L.* and Zhang Z.G.* 2017. MoCAP proteins regulated by MoArk1-mediated phosphorylation coordinate endocytosis and actin dynamics to govern development and virulence of Magnaporthe oryzae. PLoS Genetics, 13(5):e1006814.
7)Zhou W., Shi W., Xu X.W., Li Z.G., Yin C.F., Peng J.B., Chen X.L., Zhao W.S., Zhang Y., Yang J.* and Peng Y.L. 2017. Glutamate synthase is required for conidiation, full virulence, and autophagy in the rice blast fungus, Molecular Plant Pathology, doi:10.1111/mpp.12541.
8)Yang J., Tsiang T., Bhadauria V., Chen X.L., and Li G.T. 2017. Plant Fungal Pathogenesis. Editorial.BioMed Research International, Volume 2017, doi:10.1155/2017/9724283.
9)Chen X.L.*, Wang Z., Liu C.Y. 2016. Roles of peroxisomes in the rice blast fungus. BioMed Research International, doi: 10.1155/2016/9343417.
10)Chen X.L.#*, Shen M.#, Yang J., Xing Y.F., Chen D., Li Z.G., Zhao W.S. and Zhang Y. 2016. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. Molecular Plant Pathology, doi:10.1111/mpp.12395.
11)Wang Y., He D., Chu Y., Zuo Y.S., Xu X.W., Chen X.L., Zhao W.S., Zhang Y., Yang J.* and Peng Y.L. 2016. MoCps1 is important for conidiation, conidial morphology and virulence in Magnaporthe oryzae. Current Genetics, 62(4):861-871. doi:10.1007/s00294-016-0593-3. 12)Chen X.L., Shi T., Yang J., Chen D., Xu X.W., Xu J.R., Talbot N.J. and Peng Y.L* 2014. N-glycosylation of effector proteins by an alpha-1, 3-mannosyltransferase is required to evade host innate immunity by the rice blast fungus. The Plant Cell, 26:1360-1376. 13)Li C., Yang J., Zhou W., Chen X.L., Huang J.G., Cheng Z.H., Zhao W.S., Zhang Y. and Peng Y.L.* 2014. A spindle pole antigen gene MoSPA2 is important for polar cell growth of vegetative hyphae and conidia, but is dispensable for pathogenicity in Magnaporthe oryzae. Current Genetics, 60(4):255-263. 14)Zuo Y.S., Yang J., Wang D.W., He D., Chu Y., Chen X.L., Zhou W., Hsiang T., Peng Y.L.* 2014. MoTlg2, a t-SNARE component is important for formation of the Spitzenk?rper and polar deposition of chitin in Magnaporthe oryzae. Physiological and Molecular Plant Pathology, 87:9-18. 15)Du Y.X., Shi Y., Yang J., Chen X.L., Xue M.F., Zhou W.S., Peng Y.L.* 2013. A serine/threonine-protein phosphatase PP2A catalytic subunit is essential for asexual development and plant infection in Magnaporthe oryzae. Current Genetics, 59(1-2):33-41. 16)Yang J., Kong L.A., Chen X.L., Wang D.W., Qi L.L., Zhao W.S., Zhang Y, Liu X.Z., Peng Y.L.* 2012. A carnitine-acylcarnitine carrier protein, MoCrc1, is essential for pathogenicity in Magnaporthe oryzae. Current Genetics, 58(3):139-148. 17)Chen X.L., Yang J., and Peng Y.L.* 2011. Large-scale insertional mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-mediated transformation. Methods in Molecular Biology, 722:213-224. *通讯作者,#并列作者